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Two branches of gravity–capillary solitary water waves are known to bifurcate from
a train of infinitesimal periodic waves at the minimum value of the phase speed.
In general, these solitary waves feature oscillatory tails with exponentially decaying
amplitude and, in the small-amplitude limit, they may be interpreted as envelope-
soliton solutions of the nonlinear Schrödinger (NLS) equation such that the envelope
travels at the same speed as the carrier oscillations. On water of infinite depth,
however, based on the fourth-order envelope equation derived by Hogan (1985), it
is shown that the profile of these gravity–capillary solitary waves actually decays
algebraically (like 1/x2) at infinity owing to the induced mean flow that is not
accounted for in the NLS equation. The algebraic decay of the solitary-wave tails
in deep water is confirmed by numerical computations based on the full water-
wave equations. Moreover, the same behaviour is found at the tails of solitary-wave
solutions of the model equation proposed by Benjamin (1992) for interfacial waves
in a two-fluid system.

1. Introduction
Since Longuet-Higgins (1989) first provided numerical evidence that solitary waves

are possible on water of infinite depth when surface tension is present, significant
progress has been made in our understanding of gravity–capillary solitary waves.
Apart from the familiar shallow-water solitary waves described by the Korteweg–de
Vries (KdV) equation, there is a new class of gravity–capillary solitary waves stemming
from the fact that, in the presence of surface tension, the linear-water-wave phase
speed can attain a minimum at a finite wavenumber. At this wavenumber, the phase
speed is equal to the group velocity and it is possible to construct small-amplitude
solitary waves in the form of locally confined wavepackets whose envelope travels
at the same speed as the carrier oscillations. Accordingly, these waves may also
be interpreted as particular envelope-soliton solutions of the nonlinear Schrödinger
(NLS) equation (Akylas 1993; Longuet-Higgins 1993).

Consistent with this interpretation, furthermore, it is expected that two branches of
symmetric solitary waves bifurcate from infinitesimal periodic waves at the minimum
phase speed: ‘elevation’ or ‘depression’ waves, depending on whether the peak of the
envelope coincides, respectively, with a crest or a trough of the carrier oscillations.
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Vanden-Broeck & Dias (1992), in fact, were able to compute solitary waves of
both these types in water of infinite depth, extending the earlier numerical work
of Longuet-Higgins (1989) that had focused on the depression branch. Additional
numerical results were provided in finite depth by Dias, Menasce & Vanden-Broeck
(1996). Moreover, Dias & Iooss (1993) constructed small-amplitude expansions of
elevation and depression solitary waves with exponentially decaying oscillatory tails
in water of finite depth, consistent with the predictions of the NLS equation (Akylas
1993; Longuet-Higgins 1993).

Supporting the asymptotic and numerical studies cited above, Iooss & Kirchgässner
(1990) provided a rigorous existence proof, based on centre-manifold reduction, for
small-amplitude symmetric solitary waves near the minimum phase speed in water
of finite depth. The proof could not be extended to the infinite-depth case, however.
Later, Iooss & Kirrmann (1996) managed to handle this difficulty by following a
different reduction procedure which also brought out the fact that the solitary-wave
tails behave differently in water of infinite depth, their decay being slower than
exponential, although the precise decay rate could not be determined. By assuming
the presence of an algebraic decay, Sun (1997) was able to show that the profiles of
interfacial solitary waves in deep fluids must decay like 1/x2 at the tails. We also
remark that earlier Longuet-Higgins (1989) had inferred such a decay on physical
grounds for deep-water solitary waves.

In the present paper, we derive an asymptotic expression for small-amplitude
gravity–capillary solitary waves in deep water that exhibits the algebraic decay (like
1/x2) of the tails. For this purpose, improving on the NLS equation, we use the
fourth-order envelope equation derived by Hogan (1985) that accounts for the mean
flow induced by a modulated wavepacket. Even though it appears as a higher-order
effect in the perturbation analysis, the mean-flow contribution decays like 1/x2 at
infinity in deep water, ultimately dominating the exponential decay of the leading-
order wave profile implied by the NLS equation. This non-uniform behaviour at the
tails of solitary waves in deep water is also supported by numerical computations
based on the full water-wave equations.

The algebraic decay of their tails is expected to be a common feature of solitary
waves in deep fluids. In the case of interfacial waves, for example, Benjamin (1992)
proposed an integral–differential equation for waves in a two-fluid system, taking
the lower fluid to be of infinite depth. In the presence of capillarity at the interface,
the phase speed of this model evolution equation attains an extremum at a finite
wavenumber where, as expected, elevation and depression solitary waves bifurcate.
Following a similar asymptotic approach as in the water-wave problem, it is confirmed
that the tails of these waves indeed decay like 1/x2 owing to the induced mean
flow.

The following discussion focuses on the two symmetric elevation and depression
solitary-wave branches that bifurcate from infinitesimal periodic waves at the min-
imum phase speed. In addition, however, as demonstrated in a recent study of the
fifth-order KdV equation by Yang & Akylas (1997), there is an infinity of sym-
metric and asymmetric solitary-wave solution branches that bifurcate at small, but
finite, amplitude near the minimum phase speed. These solitary waves comprise more
than one wavepacket and can be constructed asymptotically by piecing together
NLS envelope solitons. While such multi-packet solitary waves are also expected
to have algebraically decaying tails in deep water, this aspect will not be pursued
here.
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2. Fourth-order envelope equation
Consider gravity–capillary waves on the surface of deep water −∞ < x < ∞,
−∞ < z 6 0. In analysing solitary-wave disturbances, we shall follow Vanden-Broeck
& Dias (1992) and use dimensionless variables based on σ/(ρc2) as the characteristic
lengthscale and σ/(ρc3) as the characteristic timescale, c being the solitary-wave speed,
σ the coefficient of surface tension and ρ the fluid density; thus, the solitary-wave speed
is normalized to 1. The gravity–capillary linear dispersion relation then takes the form

ω2 = |k|(α+ k2), (2.1)

where ω and k denote the frequency and wavenumber, respectively, of infinitesimal
periodic waves and

α =
gσ

ρc4
(2.2)

is a dimensionless parameter, g being the gravitational acceleration.
As noted earlier, our interest centres on solitary waves that bifurcate from infinites-

imal periodic waves when the phase and group speeds are equal, cp = cg = 1; from
(2.1) it follows that this occurs at ω = ω0 = 1

2
, k = k0 = 1

2
, for α = α0 = 1

4
. In

the small-amplitude limit, these solitary waves take the form of slowly modulated
wavepackets such that the envelope travels at the same speed as the wave crests
(Akylas 1993; Longuet-Higgins 1993).

Accounting for nonlinear and dispersive effects correct to third order in the wave
steepness, the envelope of a weakly nonlinear gravity–capillary wavepacket in deep
water is governed by the NLS equation (see, for example, Djordjevic & Redekopp
1977). A more accurate envelope equation, that includes effects up to fourth order
in the wave steepness, was derived by Dysthe (1979) for pure gravity wavepackets in
deep water. Later, Hogan (1985), starting from Zakharov’s (1968) integral equation,
extended Dysthe’s equation to deep-water gravity–capillary wavepackets. Apart from
the leading-order nonlinear and dispersive terms present in the NLS equation, the
fourth-order equation of Hogan (1985) includes certain nonlinear modulation terms as
well as a non-local term that describes the coupling of the envelope with the induced
mean flow. In addition to playing a significant part in the stability of a uniform
wavetrain (Dysthe 1979; Hogan 1985), this mean flow turns out to be important at
the tails of gravity–capillary solitary waves in deep water (see §4).

In terms of the dimensionless variables used here, the evolution equation derived
by Hogan (1985) for the envelope A(X,T ) of the free-surface elevation,

η(x, t) = 1
2
ε {A ei(kx−ωt) + c.c.}+ O(ε2), (2.3)

takes the form

iAT + pAXX + qA2A∗ +iε (rAXXX + uA2A∗X + vAA∗AX)− εkAφX
∣∣
Z=0

= 0. (2.4)

Here X = ε(x−cgt), Z = εz, T = ε2t are scaled variables that describe the wavepacket
modulations in a frame of reference moving with the group velocity cg . As expected,
to leading order in the wave steepness ε � 1, equation (2.4) reduces to the familiar
NLS equation, while the coupling with the induced mean flow mentioned earlier
is reflected in the last term of (2.4). Specifically, the mean-flow velocity potential
ε2 φ(X,Z, T ) satisfies the boundary-value problem

φXX + φZZ = 0 (−∞ < Z < 0, −∞ < X < ∞),

φZ = 1
2
ω(|A|2)X (Z = 0),

|∇φ| → 0 (Z → −∞),
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from which it follows that

φX
∣∣
Z=0

= − 1
2
ω

∫ ∞
−∞
|s| eisX F(|A|2) ds, (2.5)

where

F(·) =
1

2π

∫ ∞
−∞

e−isX (·) dX

denotes the Fourier transform. Hence, the coupling of the envelope with the induced
mean flow enters via a non-local term in the fourth-order envelope equation (2.4). The
coefficients of the rest of the terms in (2.4) are given by the following expressions:

p =
ω

8k2

3k4 + 6αk2 − α2

(α+ k2)2
, (2.6a)

q = −ωk
2

16

2k4 + αk2 + 8α2

(α− 2k2)(α+ k2)
, (2.6b)

r = − ω

16k3

(α− k2)(k4 + 6αk2 + α2)

(α+ k2)3
, (2.6c)

u =
ωk

32

(α− k2)(2k4 + αk2 + 8α2)

(α− 2k2)(α+ k2)2
, (2.6d)

v = −3ωk

16

4k8 + 4αk6 − 9α2k4 + α3k2 − 8α4

(α− 2k2)2 (α+ k2)2
, (2.6e)

where ω satisfies the dispersion relation (2.1).

3. Solitary waves
Envelope-soliton solutions of equation (2.4) are now sought in the form

A = R(X) exp{i(λT + εf(X))} (3.1)

with R → 0 as X → ±∞.
Upon substitution of (3.1) into (2.4), it is found that R and f satisfy the equation

system

pRXX − λR + qR3 − εkRφX
∣∣
Z=0

= 0, (3.2a)

pRfXX + 2pRXfX + rRXXX + (u+ v) R2RX = 0. (3.2b)

To leading order in ε, the relevant solution of equation (3.2a) is

R = sech

{(
q

2p

)1/2

X

}
(3.3)

with λ = 1
2
q, so envelope solitons are possible only when qp > 0. Assuming this to

be the case, f is then determined from equation (3.2b) after multiplying with R and
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integrating once:

f = − rq

4p2
X −

(
2p

q

)1/2
p(u+ v)− 3rq

4p2
tanh

{(
q

2p

)1/2

X

}
. (3.4)

Combining (3.1), (3.2) and (3.4) with (2.3), the envelope-soliton solution found
above describes a locally confined wavepacket with envelope of permanent form. As
a whole, however, this disturbance is not a solitary wave because the envelope travels
with the group velocity

cg =
ω

2k

α+ 3k2

α+ k2
, (3.5)

while the carrier oscillations travel with the (linear) phase speed cp = ω/k, slightly
modified by nonlinear effects,

ω

k
− q

2k
ε2.

A solitary wave is obtained only when these two speeds are equal, which requires
that

cg(k; α) = 1, (3.6a)

ω(k; α)− 1
2
q ε2 = k, (3.6b)

in view of the fact that the solitary-wave speed has been normalized to 1.
As already noted, for ε = 0, conditions (3.6) are met at k = k0 = 1

2
, ω = ω0 = 1

2

for α = α0 = 1
4
, where cp = cg = 1. Moreover, from (2.6), the corresponding values of

the coefficients of the envelope equation (2.4) are

p0 = 1
2
, q0 =

11

(16)2
, r0 = u0 = 0, v0 = 3

32
. (3.7)

Note that p0q0 > 0 so the envelope-soliton solution (3.3) holds, and one expects
branches of solitary waves to bifurcate from infinitesimal periodic waves at k0, ω0

and α0.
To describe the bifurcating solitary-wave solution branches for ε � 1, we expand

k = k0 + ε2k1 + · · · , α = α0 + ε2α1 + · · · ; (3.8)

upon substitution into conditions (3.6), (3.6a) requires, correct to O(ε2),

∂cg

∂α

∣∣∣∣
0

α1 +
∂2ω

∂k2

∣∣∣∣
0

k1 = 0.

From (3.5), however, (∂cg/∂α)|0 = 0 so k1 = 0, and (3.6b) yields

∂ω

∂α

∣∣∣∣
0

α1 =
q0

2
;

hence, on using (2.1) and (3.7),

α1 =
11

(16)2
. (3.9)

Returning to (3.3) and (3.4), taking into account (3.7), the magnitude of the envelope
of the solitary wave and the correction to the phase read

R = sech

(√
11

16
X

)
, (3.10a)
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f = − 3

4
√
11

tanh

(√
11

16
X

)
. (3.10b)

Inserting these expressions into (3.1) and (2.3), the solitary-wave profile, correct to
O(ε), is expressed as

η =
16
√
11

µ1/2 sech
{
µ1/2 (x− t)

}
cos 1

2
(x− t) + O(µ), (3.11)

where, in view of (3.9),

µ =
11

(16)2
ε2

denotes the small departure of the parameter α from its value α0 = 1
4

at the bifurcation
point. According to the definition of α in (2.2), the fact that µ > 0 implies that the
bifurcating solitary waves travel at a speed less than the minimum gravity–capillary
phase speed.

We remark in passing that expression (3.11) corresponds to a symmetric elevation
solitary wave, where the peak of the envelope coincides with a crest of the carrier
oscillations. Based on the fourth-order envelope equation used above, it would appear
that one could add an arbitrary phase shift to the carrier oscillations relative to the
envelope, suggesting that asymmetric waves are also possible as this phase-shift
parameter is varied. However, a more careful perturbation analysis, that accounts
for exponentially small corrections in ε, reveals that only symmetric solitary waves –
either elevation or depression for which the phase shift is equal to 0 or π, respectively
– bifurcate at infinitesimal amplitude (Yang & Akylas 1997).

4. Behaviour at the solitary-wave tails
According to the leading-order expression (3.11), the solitary-wave profile features

oscillatory tails with exponentially decaying amplitude. The O(µ) corrections, not
explicitly displayed in (3.11), include a second-harmonic contribution proportional
to sech2 {µ1/2 (x − t)} cos(x − t) and a correction to the first harmonic, proportional
to sinh{µ1/2 (x − t)} sech2 {µ1/2 (x − t)} sin 1

2
(x − t), that derives from the phase f in

(3.10b). Both these terms decay exponentially at the solitary-wave tails.
In addition, however, there is a contribution from the induced mean flow. More

specifically, according to (2.5) and (3.1), the mean-flow velocity potential is given by

ε2 φ
∣∣
Z=0

= i
64

11
µ

∫ ∞
−∞

sgn s exp

{
is

16
√
11

µ1/2 (x− t)
}
F(R2) ds ,

and the associated free-surface elevation is

η = −ε
2

α0

φt
∣∣
Z=0

= −
(

16
√
11

µ1/2

)3 ∫ ∞
−∞
|s| exp

{
is

16
√
11

µ1/2 (x− t)
}
F(R2) ds.

Using Watson’s lemma (Bender & Orszag 1978, p. 263), the asymptotic behaviour
of η at the solitary-wave tails is found to be

η ∼ 32
√
11

µ1/2F(R2)

∣∣∣∣
s=0

1

(x− t)2
(µ1/2 |x− t| � 1),

where, from (3.3),

F(R2)
∣∣
s=0

=
1

2π

∫ ∞
−∞

sech2

{√
11

16
X

}
dX =

16

π
√
11
.
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Therefore, finally,

η ∼ 512

11π
µ1/2 1

(x− t)2
(µ1/2 |x− t| � 1), (4.1)

indicating that the contribution of the mean flow decays algebraically in the far field.
Comparing the exponential decay of the leading-order profile (3.11) with the

algebraic decay of the mean flow (4.1) at the solitary-wave tails, it is clear that the
latter ultimately dominates when |x− t| is large enough:

|x− t| � − ln µ

µ1/2
.

This non-uniform behaviour occurs in deep water only and it is caused by the non-
local coupling of the envelope with the induced mean flow noted earlier. Similar
non-uniformities are to be expected in general for solitary waves with oscillatory tails
in deep fluids, and an example of interfacial waves in a two-fluid system will be
discussed in §6 based on a model equation proposed by Benjamin (1992).

5. Numerical results
In this section, we present results from numerical solutions of the full water-wave

problem, in an effort to confirm the predictions of the asymptotic theory regarding
the behaviour of the tails of solitary waves in deep water.

The asymptotic results are expected to be valid for small values of µ, close to
the bifurcation point, and in making a quantitative comparison with numerical
computations of solitary waves, one faces a trade off: as µ→ 0, the oscillations at the
tails decay very slowly, masking the underlying algebraic decay of the induced mean
flow unless a suitably large computational domain is used. For moderate values of µ,
on the other hand, the algebraic decay of the solitary-wave tails is evident, but the
asymptotic results – the constant multiplying the 1/(x − t)2 behaviour in (4.1) – are
not in quantitative agreement with the computations.

The numerical results presented here were obtained following the numerical proce-
dure of Vanden-Broeck & Dias (1992). Specifically, the free-surface elevation η was
computed as a function of the velocity potential φ at the free surface by discretizing,
and then solving via Newton iteration, a system of two nonlinear integral–differential
equations at N equally spaced grid points. To avoid spurious results, as emphasized
in Dias et al. (1996), the number of points N and the grid spacing ∆φ have to be
chosen with care. For our purposes, after some experimentation, it was concluded
that, for ∆φ = 0.09, N = 1800 were enough points to give accurate solutions for
values of µ > 0.003. In accordance with the remarks made above, reducing µ any
further would require increasing the computational domain (larger value of N).

Figure 1 shows a plot of ln |η| against ln |x − t| for the depression solitary wave
corresponding to µ = 0.02 (α = 0.27). Note that, in this log–log plot, the free-surface
elevation approaches a straight line with slope −2 to a very good approximation,
supporting the conclusion that the tail ultimately decays algebraically like 1/(x− t)2.

To estimate the constant C multiplying 1/(x− t)2, we make use of the property∫ ∞
−∞
η(ξ) dξ = 0

that, as shown by Longuet-Higgins (1989), is obeyed by gravity–capillary solitary
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Figure 1. Log–log plot of the free-surface elevation |η| as a function of |x− t| for the depression
solitary-wave profile corresponding to α = 0.27.
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Figure 2. Plot of the constant C multiplying the 1/(x − t)2 behaviour at the tails of depression
solitary waves in deep water, as a function of the parameter µ. ◦: computed values on the basis of
the full water-wave equations; ——: asymptotic expression according to (4.1).

waves in deep water. Assuming that the algebraic decay takes over beyond some
point x− t = ξ∞, say, close to the edge of the computational domain, one then has

C

ξ∞
= −

∫ ξ∞

0

η(ξ) dξ.

Computed values of C for depression solitary waves corresponding to certain
µ > 0.003 are plotted in figure 2, where the asymptotic result (4.1)

C ∼ 512

11π
µ1/2

is also shown for comparison. As expected, the agreement between the asymptotic
and numerical results improves as µ is decreased, but, for reasons already explained,
it is difficult to extend the computations to even smaller values of µ.
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6. Interfacial solitary waves
Benjamin (1992) derived an approximate evolution equation for weakly nonlinear

long-wave disturbances at the interface of a two-fluid system assuming that the lower
fluid is deep and the interface is subject to capillarity. This model equation consists of
the KdV equation modified with the addition of a non-local dispersive term analogous
to that of the Benjamin–Davis–Ono (BDO) equation. In dimensionless variables, the
equation proposed by Benjamin (1992) may be written in the form

ut + uux + aLux + buxxx = 0. (6.1)

The non-local operator L is defined as

L(·) =

∫ ∞
−∞
|s| eisxF(·) ds

in terms of the Fourier transform F(·), and the parameters a, b > 0 are such that
both dispersive terms are equally important.

In more recent work, Benjamin (1996) demonstrated that the evolution equation
(6.1) admits periodic- and solitary-wave solutions. He also noted that the tails of
solitary waves decay algebraically for all a > 0, drawing attention to the fact that,
in the limit that the non-local dispersive term is relatively small, solitary waves
of equation (6.1) approach those of the KdV equation, which have exponentially
decaying tails, in a non-uniform manner.

In discussing solitary waves, it is convenient to scale u with c, x with a/(2c) and
t with a/(2c2), c being the solitary-wave speed. In terms of these scaled variables,
equation (6.1) then becomes

ut + uux + 2Lux + αuxxx = 0, (6.2)

where

α =
4bc

a2
,

and the solitary-wave speed is equal to 1, consistent with the normalization used
earlier.

The corresponding linear dispersion relation is

ω = 2k |k| − αk3, (6.3)

from which it is easy to check that, for α = α0 = 1, the phase speed cp = ω/k attains
the maximum value cp = 1 at k = k0 = 1. In fact, consistent with our earlier findings
for gravity–capillary solitary waves, the solitary waves of equation (6.2) discussed
by Benjamin (1996) bifurcate from infinitesimal periodic waves at this wavenumber
and, in the small-amplitude limit, they may be interpreted as envelope solitons with
stationary crests.

While the presence of an extremum of the phase speed at a finite wavenumber is
essential for the bifurcation of these solitary waves, the induced mean flow, which
determines the behaviour of their tails, depends on the low-wavenumber limit of the
dispersion relation. More specifically, like the dispersion relation (2.1) of deep-water
gravity–capillary waves, relation (6.3) is singular at k = 0 owing to the assumption that
the lower fluid is deep, and the induced mean flow is expected to decay algebraically
at the solitary-wave tails. On the other hand, when the dispersion relation has no
singularity at k = 0, as is the case for gravity–capillary waves on water of finite
depth and in the fifth-order KdV equation (Grimshaw, Malomed & Benilov 1994),
the induced mean flow decays exponentially and so does the solitary-wave profile.
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Following an asymptotic procedure similar to that used earlier for deep-water
gravity–capillary solitary waves, we now examine small-amplitude solitary waves of
the Benjamin equation (6.2) and verify that the induced mean flow indeed causes their
tails to decay algebraically (like 1/x2).

We begin by deriving an evolution equation, analogous to (2.4), for the envelope
A(X,T ) of a small-amplitude wavepacket. To this end, we expand

u = 1
2
ε {A(X,T ) eiθ + c.c.}+ ε2 {A2(X,T ) e2iθ + c.c.}+ ε2 A0(X,T ) + · · · , (6.4)

where θ = kx − ωt and X = ε(x − cgt), T = ε2t denote the envelope variables, cg
being the group velocity, as before.

Substituting expansion (6.4) into equation (6.2) and collecting terms proportional
to exp(2iθ), the amplitude of the second harmonic is given by

A2 =
1

8

k

ω − 4k2 + 4αk3
A2 − iε

16

ω − 5αk3

(ω − 4k2 + 4αk3)2
(A2)X + O(ε2). (6.5)

Similarly, collecting mean terms yields

A0 =
1

4cg
|A|2 +

ε

4c2
g

∫ X

−∞
(|A|2)T dX ′ +

ε

2c2
g

L0(|A|2) + O(ε2), (6.6)

where

L0(·) =

∫ ∞
−∞
|s| eisX F(·) ds.

Finally, collecting terms proportional to exp(iθ) and making use of (6.5) and (6.6), it
is found that A(X,T ) satisfies an evolution equation analogous to (2.4):

iAT + pAXX + qA2A∗ + iε(rAXXX + uA2A∗X + v|A|2AX)− ε k

2c2
g

AL0(|A|2) = 0, (6.7)

where

p = 2− 3αk, (6.8a)

q = − k

8cg

2ω − 4k2 + 5αk3

ω − 4k2 + 4αk3
, (6.8b)

r = α, (6.8c)

u =
kp

4c2
g

+
q

k
, (6.8d)

v =
k

8

(ω − 5αk3)

(ω − 4k2 + 4αk3)2
− kp

4c2
g

+
2q

k
. (6.8e)

It is clear that equation (6.7) admits envelope-soliton solutions of the form (3.1),
(3.3) and (3.4). These packets correspond to solitary waves of the Benjamin equation
(6.2), however, only if conditions (3.6), which ensure that the envelope travels at the
same speed as the wave crests, are met. As expected, for ε = 0, these conditions are
satisfied at the bifurcation point ω0 = k0 = 1 for α0 = 1. Proceeding then as before,
to examine solitary-wave solutions near this point, we expand k and α as in (3.8) and,
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upon substitution of these expansions into (3.6), making use of the dispersion relation
(6.3), we find

k1 = − 9
32
, α1 = 3

16
. (6.9)

From (6.8), the values of the coefficients of the envelope equation (6.4) at the
bifurcation point are

p0 = −1, q0 = − 3
8
, r0 = 1, u0 = 1

8
, v0 = 1

2
.

Therefore, according to (3.3) and (3.4),

R = sech

(√
3

4
X

)
,

f =
3

32
X − 1

2
√
3

tanh

(√
3

4
X

)
.

Combining these expressions with (3.1) and (6.4), the solitary-wave profile, correct
to O(ε), then reads

u =
4
√
3
µ1/2 sech {µ1/2 (x− t)} cos(x− t) + O(µ), (6.10)

where, in view of (6.9), µ ≡ α− α0 = 3ε2/16.
Based on the leading-order expression (6.10), the solitary-wave tails feature expo-

nentially decaying oscillations, and it is easy to check that the second harmonic in
(6.5) also decays exponentially. On the other hand, using (6.7), the mean contribution
(6.6) may be rewritten as

A0 = 1
4
|A|2 − 1

4
iε (A∗AX − AA∗X) + 1

2
εL0(|A|2).

Clearly, the first two terms above decay exponentially but the third one decays
algebraically since

L0(R
2) =

∫ ∞
−∞
|s| eisXF(R2) ds ∼ − 2F(R2)

∣∣
s=0

1

X2
(X � 1)

with

F(R2)
∣∣
s=0

=
1

2π

∫ ∞
−∞

sech2

(√
3

4
X

)
dX =

4

π
√
3
.

Therefore, finally,

u = ε2A0 ∼ −
16

3π
µ1/2 1

(x− t)2
(µ1/2 |x− t| � 1). (6.11)

Expression (6.11) is analogous to (4.1) derived earlier for gravity–capillary solitary
waves in deep water. In both cases, the mean contribution ultimately dominates at the
solitary-wave tails which, as a result, decay algebraically rather than exponentially.
Similar phenomena are to be expected in general for solitary waves in deep fluids.
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